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The formulation and solution of a boundary value problem is presented, describing the influence 
of the free convective diffusion on the forced one to a sphere for a wide range of Rayleigh, Ra, 
and PecIet, Pe, numbers. It is assumed that both the free and forced convection are oriented 
in the same sense. Numerical results obtained by the method of finite differences were approximat­
ed by an empirical formula based on an analytically derived asymptotic expansion for Pe -->- 00. 

The concentration gradient at the surface and the total diffusion current calculated from the 
empirical formula agree with those obtained from the numerical solution within the limits of the 
estimated errors. 

Diffusion plays an important role in many physico-chemical and chemical engineer­
ing problems. Its most general case in the liquid phase is convective diffusion, i.e. 
essentially transport of a dissolved substance in a streaming solution accompanied 
by molecular diffusion. Streaming can be either artificial, caused by an external force, 
or natural, due to density gradients in a field of gravity, causing the lighter parts 
of the solution to move upwards and the heavier downwards. Thus, we have to deal 
respectively with forced and free convection, both of which may in reality proceed 
at the same time. This combined case has been dealt with by several authors l - 4 , 

although mainly experimentally and with an empirical mathematical description. 
The present paper deals with the influence of free on forced convection to a sphere 
under laminar flow regime in the cocurrent case. 

Mathematical Formulation of the Problem 

Convective diffusion in liquid phase is described by the following system of partial 
differential equations 

v. Vc = D dc, 

(v. V)v = F - Q-l Vp + vdv, 

V. v =0 
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with suitable boundary conditions (see below). Here, C denotes concentration of the 
diffusing substance, D its diffusion coefficient, v solution velocity vector, (! density 
of solution, v its viscosity, F vector of external force acting upon the solution, and p 
pressure. The diffusion flux, Q, is given by grad c at the surface of the sphere. First 
we shall simplify the system (1 a - c). 

We shall use the coordinate system shown in Fig. 1. Arrows denote the direction 
of the forced flow characterized by velocity v. It is convenient to introduce spherical 
coordinates r, cp, 8 

x = I' sin 8 cos cp 

y = I' sin 8 sin cp 

z = l' cos cp . 

(2) 

It is appearent from Fig. 1 and equations (2) that the solution will be independent 
of the angle cpo 

We assume that the only force acting upon the system is due to the acceleration 
of gravity g. Hence, 

or in spherical coordinates 

where Co denotes concentration for r -+ 00. We assume that Co > 0, k > O. 
The continuity equation (Ic) enables us to lower the number of unknown functions 

by one: the sought velocity componems Vr and v~are replaced by the stream function 

Vr = (1/1'2 sin 8) a",/a8, Va = -(I/r sin 8) 2"'/(11'. (3) 

It can be shown that the velocity components (3) satisfy equation (Ic) expressed 
in spherical coordinates. Pressure p in equation (1 b) can be eliminated by simple 
rearrangement. 

Further simplification can be achieved by introducing dimensionless variables 
y, C, 'l' and parameters Pe (Peelet number), Sc (Schmidt number) and Gr (Grashof 
number) 

y = (I' - a)/a, C = clco, tp = "'Iva, 

Pe = aviD, Sc = v/D, Gr = kgcoa 3/Q\,2 , 

(4) 

(5) 
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where a denotes radius of the sphere. Second powers of the stream function 1/1 in the 
transformed equations may be omitted, since they have a negligible influence on the 
concentration gradient. (This was proved by separate calculations.) Thus, 

Se(! + yt 2 (l/sin 9) [(ac/oy) a '1'/09 - (aeja9) o'1'/oy] = a2 c/oy2 + 
+ 2(1 + yt 1 (Ic/oy + (1 + yt 2 iPc/a9 2 + cotg 9(1 + yt 2 ac/a9, (6a) 

Qyfly'1' = Gr[(1 + y) sin 2 9 vC/vy + sin 9 cos 9 aC/a9] , (6b) 

where 

Free convection is characterized by the parameter Gr. If Gr = 0 in equation (6b), 
then equations (6a) and (6c) 

(6c) 

describe the case of pure forced convection. 

Let us assume that the functions C 1 and lJ'1 satisfying the system of equations 
(6a,c) are known. We introduce new functions 

FIG. I 

Coordinate system used. Arrows denote 
direction of flow 
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which satisfy the following system of partial differential equations: 

Se(l + yt 2 (l/sin 8) [(acday) a1J'2/a8 + (ac2/ay) a1J'1/a8 + 
+ (ac2/ay) a1J'2/a8 - (ac1/a8) alJ'2/ay - (ac2/a8) alJ'l/ay -

- (ac2/a8) aIJ'2/ay] = a2c2/ay2 + 2(1 + yt1 ac2/ay + 
+ (1 + yt 2 a2c2/a82 + cotg 8(1 + yt 2 ac2/a8, (8a) 

QPy lJ'2 - Gr[(1 + y)sin28aC2/ay + sin8cos8aC2/a8] = 

= Gr[(1 + y) sin2 8 acday + sin 8 cos 8 acda8] . (8b) 

This system describes the influence of free convection on the forced one. We choose 
the following boundary conditions 

cio, 8) = 0, 

aC2 ( 0) = ° a8 y, , 

1J'2(0,8) = 0, 

1J'2(Y' 0) = 0, 

alJ'2 (0 8) = ° ay' , 

a1J'2( ) a8 y,O = 0, 

lim C2 (y, 8) = ° , 
y--+oo 

aC2 ( ) - y,1t = 0, 
a8 

lim 1J'2(y, 8) = 0, 
y--+ 00 

1J'2(y,1t) = 0, 

lim alJ'2 (y, 8) = 0, 
y--+oo ay 

alJ'2 ( ) a8 y,1t = 0. 

(9a) 

(9b) 

(9c) 

The functions C1 and 1J'1 were obtained by solving the problem for Gr = 0, i.e. 
pure forced convections. 

For the numerical solution, it is convenient to introduce a new function cI>2 

(10) 

and a new variable z 

z = y/(l + y), or y = z/(l - z), (11) 

whereby the semiinfinite integration domain (0, (0) x (0,1t) is transformed to 
a finite one, (0, 1) x (0, 1t). For simplicity, we shall use the following notation 

C2(y, 8) = C2 (~-, 8) = C(z, 8) , 
1 - z 

Collection Czechoslovak Chern. Commun. [Vol. 501 [1985) 
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~lY, .9) = ~2 (_z -, .9) = ~(z, .9) . 
1 - z 

2701 

Thus, we arrive at the following transformed system of partial differential equations: 

(1 - Z)3 sin .9 a2c/az2 + (1 - z) sin .9 a2c/a.92 + [2Pe sin.9 cos .9 . 

. (t(l - z) - 1(1 - Z)2 + 1(1 - zt) - Ra(l - z) a~/a.9] ac/az + 
+ [(1 - z) cos.9 - Pe sin2 .9(1 - 1(1 - z) - 1(1 - Z)3) + Ra(2~ + 
+ (1 - z) a~/az)] ac/a.9 - Ra(l - z) a~/a.9 acl/az + 
+ Ra aCt/a.9(2~ + (1 - z) a~/az) = 0 (12a) 

(1 - Z)6 a4~/az4 + (1 - Z)2 a4~/a.94 + 2(1 - Z)4 a4~/az2 0.92 -
- 4(1 - Z)5 a3~/az3 - 2 cotg .9(1 - Z)2 a3~/a.93 - 2cotg.9 . 

. (1 - zt o3~/az2 0.9 + (1 - Z)2 (1 + 3 sin- 2 .9) a2~/a.92 -

- cotg .9(1 - Z)2 (2 + 3 sin- 2 .9) a~/a.9 - (1 - z) sin2 .9 ac/az -
- sin.9 cos.9 ac/a.9 = (1 - z) sin2 .9 act/az + sin.9 cos.9 acl/a.9 . (12b) 

The boundary conditions are 

C(O,.9) = 0, C(l, .9) = 0, 

ac (z, 0) = 0, ac (z, 1t) = 0, 
0.9 0.9 

~(0,.9) = 0, 

~(z, 0) = 0, 

a~ (0 .9) = 0 
az' , 

~(1,.9) = 0, 

~(z, 1t) = 0, 

a~ (1 .9) = 0 az' , 

a~ (z, 0) = 0, a~ (z, 1t) = O. 
0.9 0.9 

(13a) 

(13b) 

(13e) 

The conditions (13b,e) are physically based on the solution of the hydrodynamic 
problem of a sphere in a streaming liquid6 •7 • 

Approximate Solution/or Pe -+ 00 

Our aim was to calculate the concentration gradient at the surface of the sphere; 
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the results for large values of Pe are of special interest in practice. Therefore, we at­
tempted to find an asymptotical expansion for grad C at the surface for large Pe 
values and we have found one for 8 = 1t (see Appendix) 

grad C(O, 1t) = (Ra/Pe) (ko + k 1Pe- 1/ 3 + k2Ra Pe- 4 / 3 + ... ) , (14) 

where 

Ra = Gr Sc = kgcoa 3 /( Dv(!) (15) 

is the Rayleigh number. The coefficients ko, kl' k2' ... are difficult to express ana­
lytically; they were determined from numerical calculations. The first three terms 
ofthe expansion (14) were used in an empirical formula of the concentration gradient 
for 8 E (0, 1t) 

grad C{O, 8) = (Ra/ Pe)[ko(8) + k 1(8) Pe- 1!3 + k2(8) Ra Pe- 4 / 3 ] (16) 

leading to the total flux 

(17) 
where 

(18) 

Numerical Solution 

The system of equations (12) and (13) for functions C and tI> was solved by the finite­
-difference method. The partial differential equations (12a,b) with boundarY'condi­
tions (13) thus gave a nonlinear system of difference equations which were solved 
by the Newton method. We arrived at a system of linear equations whose sparse 
matrix contained irregularly distributed nonzero elements, and it was solved by our 
modified method of Gupta and TanjiB• To keep the discretization error small, 
the coordinate grid was chosen rather dense, resulting in a very bulky system of equa­
tions. This could not be solved directly with regard to the capacity of the memory 
of the ICL 4-72 computer. Therefore, we used the following method: The solution 
was carried out in three stages corresponding to the domains 

1) Z E (0, 1), 8 E (0, 1t) , 

2) Z E (0, t), 8 E (0, 1t) , 

3) Z E (0, !), 9 E (0, 1t) . 

The intervals of the z variable were shortened as indicated to make the grid spacing 
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gradually finer and to minimize the error in the calculation of grad C at the surface. 
In the second and third stages, it was necessary to determine the boundary conditions 
for = = 1/2 or 1/4, 9 E (0, 1t). We chose them as the boundary conditions of the 
first order by fixing the function values at the nodes of the newly formed part of the 
boundary. The prescribed values of C and cP were obtained by calculation in the 
preceding stages. 

Each of the boundary value problems was in each stage replaced by two boundary 
value problems on overlapping rectangles (Fig. 2): 

Rectangle A (0, Zt) x (0, 1t) , 

rectangle B (zo - Z l' Zo) x (0, 1t) , 

where Zo = 1 (first stage), t (second stage), and t (third stage). Further. we used 
the following "external iteration": For given approximate values of C and tP at the 
nodes of the basic rectangle <0, zo) x (0,1t) 

a) the boundary value problem is solved on rectangle A with boundary conditions 
(13) except for Z = Zl' 9 E (0, 1t), where the boundary conditions are defined by gi­
ven values which are fixed. 

b) In further step, the analogous problem is solved on rectangle B and the boundary 
conditions on the abscissa z = Zo - Zt, 9 E (0, 1t) are given by the values of the 
functions C and tP calculated in the preceding step. 

Thus, an iteration step of the external iteration cycle is finished. In the "internal 
iteration", i.e. in solving the boundary value problems, 4- 5 steps of the Newton 
method were used in most cases. 

FIG. 2 

Subdomains A and B for the solution of the 
boundary value problem 
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In every step of the external iteration cycle, in each of the three stages, the values 
calculated in the preceding step were used as starting approximation for the internal 
iteration on the rectangle (except for intersection An B in solving the problem 
on rectangle B). Values calculated in step a) were used on An B in step b). Values 
obtained in preceding stage were supplemented by interpolated values at new nodes 
when passing to the subsequent stage. At the beginning of the first stage, C and (J> 

were set equal to zero as starting approximation. 
It would be very difficult to prove the convergence of the given iteration procedure 

which is based on the known principle of maximum and minimum of the solution 
of boundary value problems given by partial differential equations of the elliptic 
type. The convergence was tested numerically and the rough estimates were substan­
tiated. 

RESULTS AND DISCUSSION 

Approximate values of grad C were calculated as 

where h is the grid spacing and Cij denotes approximate value of the concentration 
at the grid point (i, j) calculated as above. The calculated values of grad C are given 
in Table I for selected values of 8, Pe and Ra. The values of Pe were chosen with 
respect to our preceding workS and Eq. (16), those of Ra are related to our other 
work9 • 

The data in Table I are in accord with physical expectation. For 8 close to 1800 

(Fig. 1), the diffusion flux is increased by free convection, since the rate of streaming 
to the surface is higher. With decreasing 8 the influence of free convection increases 
up to a maximum at about 900 and then decreases so that for small values of 8 
the free convection has a negative effect on the diffusion currrent. This is because 
the value of grad C is lowered by the streaming from the surface. 

The values of grad C obtained by numerical solution of equations (12) and (13) 
(denoted as (grad C)n in the text below) were used for the determination of the coef­
ficients ko(8), kl(8) and kz(8) in Eq. (16). This empirical formula can be rewritten as 

W(8) = (Pe/Ra) grad C(O, 8) = ko(8) + kl(8) Pe- 1 / 3 + k2(8) Ra Pe- 4 / 3 • (20) 

If W(8) is calculated from (grad C)n, it turns out that the influence of the last term 
in Eq. (20) is small and for Ra = 16 it is quite negligible. This was made use of in the 
calculation of ko(8) and kl(8) from the approximate formula for Ra = 16 
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by the least squares method. Further, Eq. (20) implies that 

k2(.9) = Ra- 1 [Pe4 / J(W(.9) - ko(.9» - Pe k1(.9)]. (21) 

TABLE I 

Values of (grad C)n calculated from the numerical solution 

gradC 
(}o Ra 

Pe = 512 Pe = 1000 Pe = 1728 

0 16 -0·01609 -0·01079 -0·00688 
81 -0·08308 -0·05741 -0·03706 

256 -0·25895 -0·18436 -0·12025 
625 -0·59215 -0·43406 -0·28724 

30 16 -0·00477 -0·00311 -0·00153 
81 -0·02479 -0·01746 -0·00905 

256 -0·07092 -0·05583 -0·03020 
625 -0·11605 -0·11912 -0·06856 

60 16 0·00712 0·00416 0·00308 
81 0·03605 0·02048 0·01527 

256 0·11948 0·06488 0·04770 
625 0·32881 0·16633 0·11716 

90 16 0·01031 0·00579 0·00389 
81 0·05230 0·02925 0·01980 

256 0·16755 0·09252 0·06247 
625 0·42417 0·22683 0·15100 

120 16 0·00944 0·00518 0·00336 
81 0·04787 0·02630 0·01722 

256 0·15198 0·08309 0·05444 
625 0·37659 0·20155 0·13105 

150 16 0·00719 0·00385 0·00236 
81 0·03635 0·01950 0·01205 

256 0·11486 0·06139 0·03803 
625 0·28241 0·14848 0·09151 

180 16 0·00480 0·00246 0·00138 
81 0·02412 0·01233 0·00693 

256 0·07579 0·03857 0·02172 
625 0·18540 0·09324 0·05238 
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Using the calculated values of ko and klo we found k 2 from this equation for Ra = 256 
and 625 (denoted as k2(.9)2S6 and k2(.9)62S)' since at these Ra values the last term 
in Eq. (16) is especially significant. This was done for all Pe values used, since the 
last term in Eq. (16) is actually the residual of an asymptotic expansion analogous to 
the expansion (14) and may therefore depend on Pe. The coefficient k2(.9) in the for­
mula (16) was then calculated as the weighted average 

The coefficients ko(.9), kl(.9) and k2(.9) thus obtained were used to calculate grad 
qo, .9) from Eq. (16), which is denoted as (grad C)e. The results are given in Table II; 
the per cent deviation is given as 

p = 100 (grad C). - (grad C)n • 
(grad C)n 

It is seen that the empirical formula (16) is a good approximation except for small 
angles .9. 

The coefficients K o, Kl and K2 in Eq. (18) were calculated as the above coefficients 
by using numerically calculated values of I, denoted as In. We obtained 

Ko = 0'3907, Kl = -1'506. 

In Table III are given the values of K 2 , In, I calculated from Eq. (18) and denoted 
as Ie' and the per cent deviation 

A comparison of these results with our preceding work 5 reveals that the contribution 
of free convection to the total diffusion current for Pe = Ra amounts to 3 - 4% 
in the region of Pe values considered. 

In conclusion, we present a discussion of possible errors in the calculation of grad C 
from Eq. (19). These are as follows: a) Transfer of the discretization error of Cij 

due to replacement of the differential equations by difference equations. b) Transfer 
of errors of Cij values arising in the internal iteration by Newton's method. c) Transfer 
of errors of Cij due to the external iteration. d) Transfer of errors of Cij due to the 
use of approximate values of C and ~ for z = 1/4 in the third stage. e) Discretization 
error O(h)3 in Eq. (19). A detailed analysis revealed that the values of grad Care 
subject practically only to the discretization error (a) and to the boundary error (d), 
the other errors being negligible. The upper estimates of the above errors for Ra = 81 
and given Pe values are summarized in Table IV. 
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APPENDIX 

Approximation of the DijJu.lion Equation 

The functions C z and '1'2 (Eq. (8a» can in the proximity of the sphere surface be expressed in the 
form of power series 

CAy,.9) = ao(.9) + ul (.9) Y + a2(.9) y2 + .. . 

P 2 (r,.9) = Ao(.9) + AI(.9) Y + Az(.9) y2 + .. . 

From the boundary conditions (9a-c) follows 

(AI) 

(A2) 

Coefficient al in Eq. (A 1) is obviously equal to the concentration gradient at the surface of the 
sphere. We introduce 

and set for convenience 

Equation (8a) then takes the form 

(1 + u/a l(.9)t 2 (l/sin.9) Sc[(oCI/oy) (a; (.9) u/al(.9» iJp/ou + 
+ oP/a.9 + (l1(.9)(OPt/iJ.9) oC/iJu + al (.9)(oC/ou) ap/o9 -

- a1(.9) ((iC I/o.9) ap/ou - (oPI/oy) (a~(.9) u/a 1(.9» ac/ou + 
+ oc/a.9 - al (.9) (oc/a.9) ap/ou] = ai(.9) C2C/OU 2 + 
+ (1 + uja l(.9)t 2 [(a~(.9) u/a·1(.9)Y oZCjou1 + a2Cja.92 + 
+ (2a;(.9) u/a l (.9» 02C/OU 0.9 + (a~(.9) u/a l (.9»)CC/cu] + 
+ 2(1 + u!a l (.9)t l al (9) oC/ou + (1 + u/a l (.9)t 2 x 

x cotg .9(l/;(.9) u/a l (.9» ac/ou + oC/o.9). 

Equations (Al-3) give 

C(u,.9) = u + (a 2(.9)/ai(.9» UZ + '" 

p(u, .9) = (AzC.9)/ai(.9» u2 + ... 

The function eland its derivatives can be expressed analogously as 

C1(y,.9) = b1(.9) y + b2(.9) y2 + ... 

(A3) 

(A4) 

(A5) 

(A6) 

OCI - = bl (.9) + 2b1 (.9) y + ... = b1(.9) + (2b 2(.9)/a l(.9» u + ... (A7) 
oy . 

8(~1 = b;(.9) Y + ... = (b;(.9)/a l (.9» u + ... (A8) 
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2710 

By using equations (3). (4). and the so-called Stokes velocity components6 

Vr = vcos .9[1 - t(l + yt 1 + t(1 + yt 3]. 

va = -vsin .9[1 - !(I + yt 1 - 1(1 + yt 3] 

we express the derivatives of the function 1J'1 as 

Kimla. Micka: 

(1: 1 = Re(1 + y) sin2 .9(ty + ... ) = tRe sin2 .9u/a1(.9) + .. , (A9) 
cy 

TABLE IV 

Upper estimates of the errors 
- -------

Upper estimate of error. % 
Pe 

(a) (b) (c) (d) (e) 
.--.-~-~-

512 0'9 0'002 0·18 0·75 0·20 
1000 1-9 0'002 0'18 0'75 0'25 
1728 3'0 0'002 0·28 1·25 0'30 
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Influence of Free Convection on the Diffusion Current to a Sphere 2711 

aIP l = Re(l + y)2sin8cos8(ty2 + ... ) = lResin8cos8u2jaH8) + ... , (AlO) 
a8 

where Re = aviv. If the expansions ~A7-1O) and the derivatives of the power series (A5) and 
(A6) are substituted into Eq. (A4) and only the terms with the lowest powers of II are left on each 
side, we obtain the differential equation 

where 

ai(8) a2cjau2 + M(u, 8) acjau = N(u, 8) , 

M(u, 8) = 2al(8) (1 + ujal(8)tl + (a~(8) ujal(8» X 

x (1 + u/a l(8)t 2 (ljsin 8) Se aIPt/ay - al(8) (1 + u/a 1(8)t 2 x 
x (Se/sin 8)(aIPlja8 + aIPj(8) , 

N(u, 8) = (1 + u/a l(8)t 2 (Se/sin 8) [ -al(8) (act/a8) alP/au + 
+ (acl/ay) (a~(8) uJa l(8» alP/au + aIP/a8] . 

(All) 

Equation (All) can be treated as an ordinary differential equation of the second order for the 
function C = C(II, 8) with 8 as parameter. It is satisfied in the proximity of the sphere surface 
as a good approximation. Since the changes of the functions C and 'P are most profound in the 
mentioned region, it can be expected that Eq. (All) is a satisfactory approximation in the entire 
region under consideration and that the concentration gradient at the surface of the sphere 
can be calculated from its solution with a good accuracy. 

Calculation of aJ (1t) 

Equations (All) and (A5) yield simply 

with 

lJ(u) = J:exp {- f:[M(t, 8)/a~(8)] dt} dw, 

l2(u) = J: {exp [ - f:(M(t, 8)/a~(8» dt] f:[N(t, 8)Jai(8)] x 

x exp [J: (M(T, 8)/ai(8» dT] dt} dw. 

Further we denote 

lk = lim lk(u) , k = 1,2. 
g-+", 

From the second one of the conditions (9a) we obtain 

lim C(u, 8) = 0, 
g-+", 

Collection Czechoslovak Chem. Commun. [Vol. 50) [19851 
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2712 Kimla, Micka: 

hence Eq. (AI2) for u -->- 00 takes the form 

(AI3) 

This is a differential equation for the function at occurring in the expansion (AI) and giving 
the gradient of the concentration C 2 at the surface of the sphere. Equation (A13), however, 
involves also unknown functions 8'P/8u and 8'P/88 in addition to al and ai. For this reason, 
it is not suitable for even an approximate calculation of al' Nevertheless, we shall show that 
an asymptotical expansion of al (1t) for Pe -->- 00 can be obtained on the basis of some data about 
the course of 8 'P / 8u and 8 'P /88. 

To obtain the necessary data about 'P, we introduce the expansions (AI), (A2), (A7), and (A8) 
into Eq. (8b) and compare the multipliers standing before the powers of y. Thus, 

(AU) 

In calculating the integrals 11 and 12 , it is convenient to use the substitution (11) 

z = yj(1 + y), y = zj(l - z), Z E (0, 1) . (AI5) 

The expansion (A2) then takes the form 

'P2 (_Z_, B) = Ao{B) + Al{B) _z_ + A2{B) Z2 2 + ... 
1 - z 1 - z (1 - z) 

= Bo{B) + Bl{B) z + B2{B) Z2 + BiB) Z3 + B4(B) Z4 + .,. , 

where Bo = Bl = 0 owing to the boundary conditions. By comparing both infinite' series 
after expanding the terms (1 - z) - k, we obtain 

By substituting into Eq. (AU) and rearranging we obtain 

4! (B4(B) _ 3 BiB) + 3 B2(B) ) + 4 Bi(B) _ 4 B~(B) cotg B = 
Gr sin B Gr sin B Gr sin B Gr sin B Gr sin B 

= (al(B) + bleB»~ sin B . (AI6) 

Analysis of numerical results revealed that the equations 

lim B2(B) = lim B3\B) = 0, 
8-+,,- Gr sin B 8-+,,- Gr SIn B 

B~(B)jGr sin B ~ (X Pe- 1/3 , 

B;(B)jGr sin B ~ P , 

(A 17) 

(AI8) 

(A19) 

Collection Czechoslovak Chem. Commun. [Vol. 501 (1985) 



Influence of Free Convection on the Diffusion Current to a Sphere 

where /} ~ 1t and It, P are constants, can be considered as very good approximations. Thus, 

B4(B) ~ Gr (a1(B) + b1(B» sin2 B, 
24 

B~(B)/GrsinB ~ 24-1(a~(B) + b~(B»sinB + 
+ 12- 1(a 1(B) + b1(B» cos B, B ~ 1t . 

The following substitutions are used in calculating the integral II: 

z = (u/a 1(B»/(1 + u/al{B» , 

x = (w/al(B»/(l + w/a 1(B» , 
X)I = S, )13 = tPe(a~(B) sin B/al(B) - cos B) . 

With the aid of the Taylor series, we thus arrive at the result 

II ~ )I- 1al(B) f:exp (-s3){1 + (Ra/Gr)(l/sin B)[B~(B) s3/3)13 + 

+ B;(B) s4/4)14 + B~(B) s5/5)15] - (a~(B)/al(B» [tB2(B) S3fy3 + 

+ tB3(B) S4/)l4 + t-B4(B) S5/)l5] - t Pe[9a;(B) sin Bs4/801(B»)l4 -

- i cos BS4/)l4]} ds . 

2713 

(A20) 

(A2l) 

For sufficiently high values of Pe and y, considering equations (A17-21), we obtain the fol­
lowing approximate formula for II valid for /} equal to or slightly less than n: 

II ~ (al(B) Eo/)I)[l + (Ra/EoGr sin B)(B;(B) E3/3)13 + 

+ B;(B) E4/4)14 + B~(B) Es/5)15) + 5Pe E4 cos B/8)14] . 

Here, En is defined for nonnegative integer n as 

Similarly, the integral 12 can be approximated as 

where 

12 ~ (Ra/Eo)[B~(B) E3/(3Gr sin B~3) + B;(B) E4/(4Gr sin B~4) + 
+ B~(B) Es cos B/5~S] , 

A formula for al (1t) in the form of Eq. (14) can then be derived from Eq. (AI3) by using the above 
approximate expressions for II and 12 , 

Collection Czechoslovak Chern. Commun. [Vol. SO] [1985] 
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